• La importancia de convertir unidades

    Estás en un mundo globalizado, tienes que entender varios idiomas.

  • Leyes de la mecánica clásica, leyes de Newton

    Explican el movimiento de la materia e incluso su inercia.

  • La energía:

    Parte fundamental del funcionamiento de las máquinas.

LEY DE LA CONSERVACIÓN DE LA ENERGÍA

LEY DE LA CONSERVACIÓN DE LA ENERGÍA Y SU DEGRADACIÓN


Ley de la conservación de la energía y su degradación

La ley de conservación de la energía establece que la energía total en un sistema aislado permanece constante, lo que significa que no se puede crear ni destruir energía, solo transformarla. La degradación de la energía se refiere a la pérdida de energía útil, donde una parte de la energía se convierte en energía térmica, que es menos aprovechable. Por ejemplo, al quemar combustible, la mayor parte de la energía química se convierte en energía térmica, lo que no puede ser convertida de nuevo en energía química. Este principio se aplica a todos los procesos de transformación energética, donde la energía suministrada es igual a la suma de la energía útil y la energía disipada caloríficamente.

Se puede demostrar también la Conservación de la Energía con un ejemplo sencillo, el carrito de la "Montaña Rusa".

Situación 1. 

La masa del carrito con tripulación es de 250 kg, la cual inicialmente se encuentra en reposo y a una altura de 20 m sobre el piso.

a) ¿cuál es su energía cinética?

Ninguna o igual a cero, ya que se encuentra en reposo (velocidad = 0).

b) ¿cuál es su energía potencial?

Ep = m*g*h

Ep = (250 kg)(10 m/s)(20 m)

Ep = 50,000 J

c) ¿cuál es su energía mecánica?

Em = Ep + Ec

Em = 50,000 J + 0 J = 50,000 J

Situación 2

Situación 3

Situación 4

Situación 5

El carrito se encuentra a nivel del piso y lleva una velocidad de 20 m/s.

a) ¿cuál es su energía cinética?

velocidad = 20 m/s

Ec 

Ec = m*v^2 

Ec = (250 kg)(20 m/s)^2

Ec = 50,000 J

b) ¿cuál es su energía potencial?

Cero, por que su altura es 0 m.

Ep = m*g*h

Ep = (250 kg)(10 m/s)(0 m)

Ep = 0 J

c) ¿cuál es su energía mecánica?

Em = Ep + Ec

Em = 0 J + 50,000 J = 50,000 J

VELOCIDAD

PRÁCTICA DE VELOCIDAD

Objetivo. Calcular la velocidad de un móvil.

Hipótesis: ¿Quién tiene mayor velocidad, un auto que se mueve 20m en 1s o una persona que se mueve 10 m en 2s?

Calcula la velocidad del carrito con la siguiente ecuación en unidades de m/s.
Ecuación de velocidad

Realiza los cálculos en tu cuaderno en orden. Para obtener el valor de la velocidad, debes dividir la distancia (en metros) entre el tiempo (en segundos).

Datos        Ecuación      Sustitución    Resultado
d =               v = d/t           v =                v =
t =
v = ?


CHOQUES

Práctica de Laboratorio: Choques Elásticos e Inelásticos

Objetivo:

Identificar y diferenciar los choques elásticos e inelásticos mediante la observación y análisis del comportamiento de carritos de dinámica en colisión.

Materiales:

- 2 carritos de dinámica con ruedas de baja fricción

- Riel de dinámica (opcional, pero recomendable)
- Sensor de movimiento o cronómetro
- Balanza granataria
- Plastilina o velcro (para simular choques inelásticos)
- Regla o cinta métrica
- Hojas de registro

Procedimiento:

Parte A: Choque Elástico
1. Mide la masa de ambos carritos.
2. Coloca los carritos en extremos opuestos del riel.
3. Lanza uno de los carritos hacia el otro.
4. Observa y registra las velocidades antes y después del choque.
5. Repite con diferentes masas o velocidades.

Parte B: Choque Inelástico
1. Une los carritos con velcro o plastilina.
2. Repite el procedimiento anterior.
3. Observa cómo se mueven juntos después del impacto.

Datos a Registrar:

- Masa de cada carrito
- Velocidad antes y después del choque
- Tipo de choque observado
- Conservación de la cantidad de movimiento (usa la fórmula:

m1* v1 + m2* v2 = m1 * v + m2 *v)

Dónde:

m1 = masa del carrito 1

v1 = velocidad del carrito 1 antes de golpearse con el otro carrito

m2 = masa del carrito 2

v2 = velocidad del carrito 2 antes de golpearse con el otro carrito

v = velocidad del carrito 1 después de golpearse con el otro carrito

v = velocidad del carrito 2 después de golpearse con el otro carrito

Análisis:

¿Se conserva la cantidad de movimiento en ambos tipos de choques?
¿Qué pasa con la energía cinética en cada caso?
¿Cómo saber si el choque fue elástico o inelástico?

Conclusión:

Redacta una conclusión donde expliques las diferencias observadas entre los dos tipos de choques y cómo se relacionan con las leyes de la Física.

EXPOSICIÓN

EXPOSICIÓN DE PROTOTIPOS Y EXPERIMENTOS


Objetivo.

Requisitos.

Recomendaciones.

Código de vestimenta.

Exposición

MOMENTO

MOMENTO LINEAL O CANTIDAD DE MOVIMIENTO


P = m*v

Donde:
 
P = Momento lineal (vector)
m = masa del objeto (kg)
v = velocidad del objeto (vector), (m/s)


Características de las diferentes colisiones

Colisión Elástica.

- La energía cinética se conserva
- El momento se conserva
- Los objetos rebotan conservando su forma original

Ejemplos: movimientos de partículas subatómicas, bolas de villar.

Colisión Inelástica.

- La energía cinética no se conserva
- El momento no se conserva (si hay fuerzas extremas actuando)
- Los objetos pueden deformarse o adherirse en el choque

En las colisiones inelásticas hay dos subdivisiones

    - Inelástica completamente: Los objetos se quedan pegados después de la colisión, como dos autos que se quedan pegados después del choque.
    - Inelástica parcialmente: Lo objetos no se quedan pegados después de la colisión pero, pierden energía cinética, como dos pelotas desinfladas o de material que no les permite rebotar eficientemente después del choque.

Ejercicios: 

I. Ejercicios numéricos.

1.- ¿Cuál es tu cantidad de movimientos si vas sobre tu bicicleta la cual pesa 10 kg a una velocidad de 25 m/s en dirección horizontal hacia el sur?

2.- ¿Qué momento lleva un auto cuya masa es de una tonelada y circula sobre el periferico hacia el norte con una velocidad de 80 km/h?

3.- ¿Cuál es el momentum de una flecha cuya masa es de 100 g y lleva una velocidad constante de 1,000 km/h hacia el oeste?

II. Matriz de inducción.

Llena la siguiente tabla.

Colisión

Definición

Ejemplos

Dibujo

Elástica

 

 

 

 

 

 

Inelástica

 

 

 

 

 


III. Simulación virtual.


Tutorial para el uso y ejecución del simulador: “Laboratorio de colisiones”
1. Accede al simulador con el enlace
https://phet.colorado.edu/es/simulations/collisions-lab
2. Da “PLAY” al video
3. Da “click” en la ventana Explora 2D
4. Identifica los elementos del simulador:
5. Activa los cuadros: normal, 2 pelotas, masa de pelotas, energía cinética, borde reflejante y elasticidad.Actividad.

Con el simulador PhET: Laboratorio de colisiones, obtén una captura de pantalla con los datos que se te asignancon base en tu número de lista (NL).

Tabla de asignación de datos para simulador en línea para cada estudiante con base en el número de lista
NL Datos
2 pelotas, elasticidad 100%, masa 1 = 0.5 kg, masa 2 = 1.5 kg, vector velocidad
2
2 pelotas, elasticidad 50%, masa 1 = 0.5 kg, masa 2 = 1.5 kg, vector velocidad
3
2 pelotas, elasticidad 0%, masa 1 = 0.5 kg, masa 2 = 1.5 kg, vector velocidad
4
2 pelotas, elasticidad 100%, masa 1 = 1.5 kg, masa 2 = 1.5 kg, vector velocidad
5
2 pelotas, elasticidad 50%, masa 1 = 1.5 kg, masa 2 = 1.5 kg, vector velocidad
6
2 pelotas, elasticidad 0%, masa 1 = 1.5 kg, masa 2 = 1.5 kg, vector velocidad
7
2 pelotas, elasticidad 100%, masa 1 = 1.0 kg, masa 2 = 1.0 kg, vector velocidad
8
2 pelotas, elasticidad 50%, masa 1 = 1.0 kg, masa 2 = 1.0 kg, vector velocidad
9
2 pelotas, elasticidad 0%, masa 1 = 1.0 kg, masa 2 = 1.0 kg, vector velocidad
10 2 pelotas, elasticidad 100%, masa 1 = 2.5 kg, masa 2 = 1.5 kg, vector velocidad
11 2 pelotas, elasticidad 0%, masa 1 = 2.5 kg, masa 2 = 1.5 kg, vector velocidad
12 2 pelotas, elasticidad 50%, masa 1 = 2.5 kg, masa 2 = 1.5 kg, vector velocidad
13 2 pelotas, elasticidad 100%, masa 1 = 3.0 kg, masa 2 = 3.0 kg, vector velocidad
14 2 pelotas, elasticidad 50%, masa 1 = 3.0 kg, masa 2 = 3.0 kg, vector velocidad
15 2 pelotas, elasticidad 0%, masa 1 = 3.0 kg, masa 2 = 3.0 kg, vector velocidad
16 2 pelotas, elasticidad 100%, masa 1 = 3.0 kg, masa 2 = 2.5 kg, vector velocidad
17 2 pelotas, elasticidad 50%, masa 1 = 3.0 kg, masa 2 = 2.5 kg, vector velocidad
18 2 pelotas, elasticidad 00%, masa 1 = 3.0 kg, masa 2 = 2.0 kg, vector velocidad19 2 pelotas, elasticidad 100%, masa 1 = 3.0 kg, masa 2 = 1.5 kg, vector velocidad
20 2 pelotas, elasticidad 0%, masa 1 = 3.0 kg, masa 2 = 1 kg, vector velocidad
21 2 pelotas, elasticidad 50%, masa 1 = 3.0 kg, masa 2 = 0.5 kg, vector velocidad
22 2 pelotas, elasticidad 100%, masa 1 = 2.5 kg, masa 2 = 3.0 kg, vector velocidad
23 2 pelotas, elasticidad 50%, masa 1 = 2.0 kg, masa 2 = 3.0 kg, vector velocidad
24 2 pelotas, elasticidad 0%, masa 1 = 1.5 kg, masa 2 = 3.0 kg, vector velocidad
25 2 pelotas, elasticidad 100%, masa 1 = 1.0 kg, masa 2 = 3.0 kg, vector velocidad
26 2 pelotas, elasticidad 50%, masa 1 = 0.5 kg, masa 2 = 3.0 kg, vector velocidad
27 2 pelotas, elasticidad 0%, masa 1 = 3.0 kg, masa 2 = 3.0 kg, vector velocidad

Rubrica de evaluación para el uso del simulador PhET Laboratorio de colisiones
Sobresaliente
Bien
Muestra totalmente el número de
pelotas (2 puntos)
Muestra parcialmente el
número de pelotas (1 punto)
Muestra totalmente la elasticidad
(2 puntos)
Muestra parcialmente la
elasticidad (1 punto)
Muestra totalmente la masa 1
(2 puntos)
Muestra parcialmente
la masa 1 (1 punto)
Muestra totalmente la masa 2
(2 puntos)
Muestra parcialmente
la masa 2 (1 punto)
Muestra totalmente el vector
velocidad (2 puntos)
Muestra parcialmente el vector
velocidad (1 punto)


Cómo tarar en la balanza granataria

CÓMO TARAR EN LA BALANZA GRANATARIA

https://youtu.be/PmLC-M_RlBY?si=jjNx_vFcDH2HA95n 

CÓMO USAR LA BALANZA GRANATARIA

TUTORIAL DE CÓMO USAR LA BALANZA GRANATARIA.

https://youtu.be/s18ppYLGtjk?si=-csdGDsY6BKqb3KW 

POTENCIA MECÁNICA 💯

PRÁCTICA "POTENCIA MECÁNICA"


Objetivo🧭:

Determinar la potencia mecánica de algunos sistemas físicos.

Hipótesis. 

El robot 🤖 A y el robot 🤖 B realizan el mismo trabajo mecánico, pero el robot 🤖 A lo realiza en menos tiempo que el robot B, entonces, ¿qué robot 🤖 tiene mayor potencia mecánica? Explica.
________________________________________________________________________________

Material a utilizar.

- 1 bloque de madera de diferentes caras🔳
- 1 dinamómetro de 10 N
- 1 dinamómetro de 20 N
- 1 flexómetro📏
- 1 transportador🏹
- 1 balanza granataria⚖
- 1 cronómetro ⏱

Desarrollo experimental. 

I. Potencia mecánica horizontal.💨

Trabajo horizontal





1.- Jala horizontalmente con el dinamómetro de 10 N (con una velocidad constante y al mismo tiempo corre el cronómetro⏱) el bloque a una distancia de 90 cm. Calcula la potencia mecánica.

W = F*d

P = W/t

2.- Vuelve a repetir el punto anterior, pero ahora hazlo con menos tiempo. Calcula la potencia mecánica.

W = F*d

P = W/t
II. Potencia mecánica vertical.📐
Trabajo vertical




1.- Jala verticalmente hacia arriba con el dinamómetro de 20 N (con una velocidad constante, al mismo tiempo corre cronómetro⏱) el bloque a una distancia de 90 cm. Calcula la potencia mecánica realizada.

W = F*h

P = W/t

1´. - Paso alternativo. Determina la masa el bloque en la balanza granataria. Jala el bloque sin necesidad del dinamómetro con una cuerda simplemente la misma distancia a velocidad constante. Toma el tiempo transcurrido. Calcula la potencia mecánica realizada.

W = m*g*h

P = W/t

2.- Vuelve a realizar el punto anterior, pero con menos tiempo. Calcula la potencia mecánica.

III. Trabajo con influencia de un ángulo.↗

Trabajo con cierto ángulo



1.- Jala con el dinamómetro de 10 N formando un ángulo de 40° con la dirección del desplazamiento (con una velocidad constante, al mismo tiempo corre el cronómetro) el bloque a una distancia de 90 cm. Calcula la potencia mecánica realizada. 

W = F*d*cos(θ)

P = W/t

2.- Vuelve a realizar el punto anterior, pero con menos tiempo. Calcula la potencia mecánica.

W = F*d*cos(θ)

P = W/t

Resultados. 📋

Realiza una tabla de los resultados con unidades.

Sistema

Datos

Ecuación

Sustitución

Resultado

Esquema

Potencia  horizontal baja

 

 F =

d = 

W =

P =



 W = F*d

P = W/t

 

 

 

Potencia  horizontal alta

 

 F =

d = 

W =

P =



 W = F*d

P = W/t

 

 

 

Potencia vertical baja

 

 

 F =

h =

W =

g = 9.81 m/s^2

P =

 

W = F*h

W = m*g*h

P = W/t

 

 

 

 

Potencia vertical alta

 

 

 F =

h =

W =

g = 9.81 m/s^2

P =

 

W = F*h

W = m*g*h

P = W/t

 

 

 

 

Potencia baja con influencia de un ángulo

 F =

d =

θ = 40°

W =

P =

 W = F*d*sen(θ)

 

P = W/t

 

 

 

Potencia alta con influencia de un ángulo

 F =

d =

θ = 40°

W =

P =

 W = F*d*sen(θ)

 

P = W/t

 

 

 


Conclusiones.










Después de realizar la experimentación y basándote en el objetivo de la práctica, escribe tus conclusiones. 📄🖋✔❌💡
____________________________________________________________________________

Nota. No se te olvide tomar evidencias de tu experimentación (fotos o vídeos cortos).📸👨🏽‍🔬👨🏽‍⚕️